High-Efficiency Thin-Film Silicon Solar Cells in Triple Junction Configuration

Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and thin-film electronics laboratory, Rue Malaüsène 71b, CH-2000 Neuchâtel, Switzerland

Tandem and Triple solar cells

- Proven reliability >20 years
- Low energy payback time of less than 1 year
- All raw materials are abundant and non-toxic
- Low material use (< 2 µm silicon)
- Established manufacturing technology
- Attractive for large scale deployment

Light scattering ZnO substrates

- Textured front contact of ZnO grown by LP-CVD
- Ar plasma converts from rough to smooth texture
- Rough ZnO: good light scattering
 => high current density
- Smooth ZnO: good growth template,
 => high Voc and fill factor

Solar cell performance

High-efficiency triple cells in p-i-n configuration reach 13.5 %, they stabilize at 12.8 % after 1000 h light soaking

Conclusions

- Ar plasma is used to modify the light scattering of textured ZnO films
- A Summed current density >30 mA/cm² is demonstrated
- High-efficiency triple cells in p-i-n configuration reach 13.5 %, they stabilize at 12.8 % after 1000 h light soaking

Financial support by OFEN under project SI/500750-01, CCEM-CH and by CTI under project Trigger 13333.1 is gratefully acknowledged. A part of this work was carried out in the framework of the FP7 project “Fast Track”, funded by the EC under grant agreement no 283501.