High-efficiency CIGS photovoltaics

Matthias Diethelm, Maximilian Krause, Simon Moser, Shiro Nishiwaki, Ceren Mitmit, Nisika, Matteo De Marzi, Huagui Lai, Radha Kothandaraman, Shih-Chi Yang, Fan Fu, Romain Carron, Ayodhya N. Tiwari, Yaroslav Romanyuk, Romain Carron

Laboratory for Thin Films and Photovoltaics, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland

CIGS photovoltaics at a glance

Cu(In,Ga)Se₂ (CIGS) photovoltaics

- Thin film multi-crystalline layers
- Stable, efficient
 - State-of-the-art: same V_{oc} deficit as c-Si
- Flexible, lightweight, uniform appearance
- Low carbon footprint

Progresses of Empa in global context

Single-junction devices

CIGS 3-stage deposition


				`````	
In, Ga 1st stage	Cu 2nd stage		In, Ga 3rd stage		S Tre
	 Tim	ne			

Record flexible CIGS cells 22.2% flexible solar cell (2022) Previous marks: 20.8% (2019), 21.4% (2021) (externally certified values)

Silver Alloying

eatment

# High performance flexible solar cells



## Solar cell treatments



# **Bifacial solar cells**



# Front power conversion efficiency (%)



### Silver-enabled low-temperature process • Sharp interface, no GaOx formation (FF)





Absorber treatments with alkali

- Light and heavy alkali (e.g. Na, K, Rb)
- Co- and post-deposition
- Improved voltage
- Surface tailoring, higher J_{SC}, reduced shunting

### Advanced characterization & modelling





### Tandem configurations



Overcoming Shockley-Queisser limit of single junctions

[Kothandaraman, Small Methods, 2023, 10.1002/smtd.202000395]

Efficiency		Top cell	Bottom cell	Empa Materials Science and Technolo	
30.2 mW/cm ²	4T	Empa	Bifacial CIGS		
29.0%	4T	National University Singapore	CIS	NUS National University of Singapore	

As bottom cell: low bandgap or bifacial CI(G)S [Krause, Solar RRL, 2023, 10.1002/solr.202201122]

- Ideal low bandgap, high current
- Allow reduced top cell bandgap (better performance and long-term stability)

As top cell: high bandgap CIGS

# **Funding / Acknowledgements**

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

### Bundesamt für Energie BFE





FNSNF



SCHWEIZERISCHER NATIONALFONDS

**SWISS NATIONAL SCIENCE FOUNDATION** 





FONDS NATIONAL SUISSE

FONDO NAZIONALE SVIZZERO