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A. Pena-Bello et al., En. Convers. and Mgmt, 2021
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Thermal storage vs. battery for SFH with PV and HP — Owner perspective () BEI(‘]IE:I?EIJE
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Thermal storage vs. battery for SFH with PV and HP — Owner perspective () UNVERSITE
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m TS (with DHW) and battery improve SS and SC

m SC: TS and battery comparable

m SS: higher for battery
(esp. high for very efficient bdlgs)

m (TS without DHW: less attractive)

m Levelized cost (includes cost of PV, HP & storage):

f— (39,28)

m Capacity tariff reduces peak flow across the board

m |n SFH100, battery in combination with capacity tariff
reduces peak flow more markedly than heat storage

A. Pena-Bello et al., En. Convers. and Mgmt, 2021
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m TS decreases LC while battery (currently) increases it SC [%]
m Total Levelized cost tends to decrease
SFH15
by combined installation of TS and battery ® B sFus 4 seroo
m Peak flow (maximum of import/export kW)
as indicator for grid friendliness Note: PhD thesis by J. Holweger/EPFL

* similar findings (SS and SC; capacity tariff)
* in spite of different configuration
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Thermal storage vs. battery for SFH with PV and HP — Owner perspective

Battery
significant improvement of SC and SS
good controllability
peak flow can be reduced
--  clearly more expensive: increases LCOE by 4-8 cents/kWh; but...

Heat storage
cost-effective (here: reduces LCOE by 2-3 cents/kWh)
/o significant improvement of SC; somewhat lower than battery for SS
o peak flow practically unchanged

-- installation much more challenging: space, temp. levels, complexity but..

--  monitoring & control much error-prone

A. Pena-Bello et al., En. Convers. and Mgmt, 2021
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. 20- — Comparison
m How does the operation of PV-coupled battery @ 77d) r
systems influence the cost of power supply? :% . ety ol gg;g ]]
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= Market/dispatch optimization model of the Swiss (plus 2 ,,. ™ "
neighboring countries’) power supply (GRIMSEL model) & 4-
m Multiple SFH with PV and batteries ] ol
m Operate SFH battery s 0o
* optimally for SFH owner g 2}
* optimally for total system & ool ;
= No grid constraints & i /
@ 0- ;
m Qutcome: 3 -05 5
m Battery operation from the household perspectve ¥~~~ -1 j
can increase the system cost. TESEIEURE Liaronruon
) o oY B 508 Sr3ifdchE  SE3EREEEY
= Time-of-use tariffs mitigate this effect to some extent. = oP8=ER:  TLF338IJW
- ¢ %z " RT3 i
M. Soini et al,, J. of En. Storage, 2020 =8 B
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optimally 29 GWp of PV + 42 GWh for LiB and 12 GWh for VRFB

m Storage esp. in suburban areas with high heating demand;
low need in urban areas

A. Rinaldi et al., Applied Energy, 2021
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PV + batteries for electrific. of heating sector — system perspective DE GENEVE
= Which PV and gnerﬁy storage investments are needed 20000 2uburb
for decarbonising the residential heating sector in CH? L %
Which type of sectors and where located? - | Gk
™ Method 5000 ... T H1t HH H
m GRIMSEL model, minimum system cost (social planner = 0
approach) %igggg
m Optimal PV and battery (Li-ion or VRFB) deployment for Emooo-
* different HP deployment scenarios E 7500
* building retrofit 3 gggg:
5 0
m Outcome 220000
m For BAU HP deployment (57% by 2050) and BAU retrofit: _VRFB == IND P
optimally 28 GWp of PV + 34 GWh for LiB and 8 GWh for VRFB 00" & o Z
m For 100% PAC and BAU retrofit: 10000 772 SFH éﬁ%
5000
e :

Conclusions

m TS and batteries both facilitate renewables

TS and batteries can reduce impact on electric

Energy retrofit = Continues to be high priority

grid

Heat pumps = "Must have” and most cost-effective

Further system configurations and in other sectors
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Thermal storage vs. battery storage for SFH with PV and HP
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A. Pena-Bello et al., submitted
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Thermal storage vs. battery storage for SFH with PV and HP

Pena-Bello et al., submitted
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Heat Pump SFH15 SFH45  SFH100
Required heat at the design point (EWy,) 2.4 1.9 10.6
Supply temperature at the design s oo =
Ty TauN 35 35 50
point (°C)
Temperature difference at the design point (K)* 16 16 61
Generated heat demand at the design point (kW) 4 1.8 9.7
HP Thermal capacity (kWy,) 1 6 16
Working fluid 410a 110a 110a
Maximum electric demand at the design point(kW,) 1.7 2 6.6
Backup heater’(kWi) 2 I 4
Space heating storage system SFH15 SFH45 SFH100
Type of storage Existing® Existing® Newd
Specific capacity of the heat release
pecific capacity of the heat release 40000 10000 6300
of storage (kJ/K)
Maximum AT (K) 1.5 1.5 10
Active building storage capacity bas
Ac 11.\( nilding stor u,,n_- apacity based on 0600 40000 83000
possible temperature difference (kJ)
Equivalent water capacity . -
= b 2 1500 2 1500 500
@ 10 K AT (1) 15 1500 15(
DHW storage system SFH15 SFH45  SFH100
Maximum AT (K) 20 20 20
Storage capacity bas
torage capacity based on 16800 16800 16800
temperature difference (kJ)
Water capacity (1) 200 200 200 14
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Table 4: CAPEX (USD) including replacements for the various technologies included in this study depending
on the type of house. Detailed values are presented in Appendix A.1
Device Size SFH15 SFH45 SFH100 Reference
PV 48 [kW,] 10360 10360 10360 [42]
Heat pump 4/6/16 [kW,;,] 10300 15500 41200 [39]
Battery® 7 [kWh] 12120 13180 13280 [41]
Tank SH 17.4 [kWh] 0P ov 1790 [39]
Tank DHW 4.7 kWh] 960 960 960 [39]
a Average values to account aging.
b The concrete of the floors and the heating water content are used as existing
heat storage and thus no additional costs are considered.
Pena-Bello et al., submitted
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Thermal storage vs. battery storage for SFH with PV and HP %2’ DE GENEVE
Indicator PV-coupled heat PV-coupled heat PV-coupled heat PV-coupled heat
pumps (baseline) pumps with pumps with pumps with
batteries thermal storage thermal storage &
DHW
LCOES (USD/kWh) 0.55-0.71
Peak flow (kW,)) 4.6-8.9
Self-consumption
(%)
Self-sufficiency (%)
Source: Pena-Bello et al., submitted 16
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