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What drives performance in data-driven and weather-

based techniques for short-term PV Forecasting?
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Graph-based multi-site PV forecasting Evaluation set-up

Intuition

• CSEM’s data-driven solution relies

entirely on production data

• PV stations can be used as a network

of virtual weather stations

• By exploiting the spatio-temporal

relations of the power production data,

cloud movements can be forecasted

Results and Discussion

Dataset:

• Power production data from 304 PV

stations over Switzerland

• Data from all stations (blue) used as

input to GNN (training and

evaluation)

• GNN trained using data from whole

2016

• Evaluation in 18 stations (red) for 21

representative days in 2017

Selection criteria: sites

• Regional coverage

• Climate

• Proximity of SwissMetNet stations

• Density of PV stations around

selected sites

Motivation:

• CloudMove solution from Meteotest offers a nowcasting service for

irradiance and PV production with SoA accuracy up to six hours ahead

(15 min. resolution)

• CloudMove is based on satellite images and numerical weather models

to propagate the cloud movements in the future

• Additionally, CloudMove uses online ground data to correct the forecasts

• Recently, CSEM developed a data-driven forecast model for multi-site

PV production forecasting based on Graph neural networks (GNNs)

• These methods can accelerate the computation of forecasts by a factor

100 (after initial training)

Objective: compare CSEM’s data-driven solution with CloudMove for

different scenarios to provide insight into their performance drivers

Selection criteria: days

• At least 5 representative days per 

season

• Mixture of different day categories 

(according to cloud level)

Evaluation metric: Peak-Normalized Root 

Mean Squared Error (NRMSE)

Overall results

• NRMSE vs forecasting horizon:

• Errors very similar up to two hours

ahead (8 steps)

• More pronounced slope for

CloudMove after 2.5 hours ahead (10

steps)

• Larger spread for CSEM’s GNN

• NRMSE vs prediction time of the day

(hourly):

• Largest errors in early morning (5:00

– 7:00) due to scarcity of information

due to zero production over night

• Large spread in errors between 7:00

and 12:00 because forecasting

horizon includes peak of solar noon

• NRMSE vs target time of the day (hourly):

largest errors near solar noon

• The spatial error distribution is almost

uniform for CloudMove, except for the

Alpine regions where no weather station

was available nearby

• CSEM’s solution yields a spreader spatial

error with highest errors near borders and

lakes

Seasonal dependency

• NRMSE vs forecasting horizon:

• Larger errors for CloudMove in winter

and summer

• Significantly larger slope in the error

evolution in spring for CloudMove

• Larger errors for CSEM’s GNN in fall

• Larger spread for CSEM’s GNN except

in summer

• NRMSE vs prediction time of the day

(hourly):

• Larger errors for CloudMove for winter

and summer and significantly larger

errors in spring

• Larger spread of errors in winter for

CloudMove

• CSEM’s GNN has a large error spread

summer around the solar noon due to

large peak production

Discussion

• CloudMove and CSEM data-driven method yield a similar error between 0-2 hours ahead predictions but

CSEM’ method yields smaller errors from 2-6 hours ahead

• CloudMove has a smaller spread of errors across sites and days benefiting from the larger coverage of

satellite images except in sites where there aren’t nearby weather stations available

• CSEM data-driven method yields a larger spread of errors across sites and days. The error can be very low

for sites with a high density of PV stations but high for sites with low density and at the border of the graph

• CloudMove achieves a lower error in fall but CSEM’s solution yields lower errors (and spread) during

summer when the production is the highest

Architecture

• The GNN model is an encoder-decoder

architecture with graph-convolutional

Long-Short-Term-Memory (GCLSTM)

cells1

• Inputs: production data from past 3

hours and clear-sky irradiance for the

forecasting horizon

• Output: power production for all sites in

the forecasting horizon (6 hours ahead,

15 min, resolution)
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